NTU develops Stretchable Sweat-Powered Battery

What do you think about a stretchable battery that is powered by sweat? This might seem impossible but scientists in NTU (Nanyang Technological University, Singapore) have managed to make it work.

Basically, it is using the content in the sweat to mix with the printed silver flake electrodes to generate electricity (Chemical Reaction). Check out this video to understand more.

And here is a picture to prove that it can generate electricity.

They have published a Paper on it. Check it out on the links below.

Given the high humidity in Singapore, this type of stretchable “sweat battery” will be ideal here. I sweat buckets when doing a run in Singapore. If my sweat can power some electronics, why not?

Hope that such technology can be commercialized soon. Check out the Press Release for more information.

Press Release

NTU Singapore scientists develop a stretchable sweat-powered battery for wearable tech

Scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a soft and stretchable battery that is powered by human perspiration.

Singapore, 16 August 2021 – The prototype battery consists of printed silver flake electrodes that generate electricity in the presence of sweat. Measuring 2 cm by 2 cm and as flat as a small paper bandage, the battery is affixed to a flexible and sweat absorbent textile that is stretchable and attachable to wearable devices, like watches, wrist bands or arm straps.

To demonstrate its potential use when it becomes incorporated in wearable biosensors and other electronic devices, the team of scientists tested their device with artificial human sweat.

In a separate trial, the team reported that an individual wearing the battery around their wrist and cycling on a stationary bicycle for 30 minutes was able to generate a voltage of 4.2 V and output power of 3.9 mW that was sufficient to power a commercial temperature sensor device and send the data continuously to a smartphone via Bluetooth.

See also  Introducing 5 New Nokia Phones with Return of Banana Phone, Nokia 8110

The battery does not contain heavy metals or toxic chemicals unlike conventional batteries, which are often built using unsustainable materials that are harmful to the environment.

Serving as a more sustainable alternative that could cut down on harmful electronic waste, the development of the sweat-powered battery reflects NTU’s commitment to find solutions to mitigate our impact on the environment. This is one of the four humanity’s grand challenges that NTU seeks to address under the NTU 2025 strategic plan.

Materials scientist Professor Lee Pooi See, and Dean of NTU Graduate College, who led the study, said: “Our technology heralds a previously unreachable milestone in the design of wearable devices. By capitalising on a ubiquitous product, perspiration, we could be looking at a more environmentally friendly way of powering wearable devices that does not rely on conventional batteries. It is a near-guaranteed source of energy produced by our bodies. We expect the battery to be capable of powering all sorts of wearable devices.”

The study was published in the peer-reviewed scientific journal Science Advances in July. A patent application for the sweat-powered battery has also been filed through NTU’s enterprise and innovation company, NTUitive.

Dr Lyu Jian, a Research Fellow from NTU’s School of Materials Science and Engineering, who is the co-first author of the study, said: “Conventional batteries are cheaper and more common than ever, but they are often built using unsustainable materials which are harmful to the environment. They are also potentially harmful in wearable devices, where a broken battery could spill toxic fluids onto human skin. Our device could provide a real opportunity to do away with those toxic materials entirely.”

Highlighting the significance of the work done by the NTU research team, Associate Professor Irene Goldthorpe from the Department of Electrical and Computer Engineering department of the University of WaterlooCanada, who is not involved in the research, said: “It is well known that electronics do not like moisture and thus wearable devices are typically fully encapsulated to shield them from sweat. This work turns sweat from a hindrance into an asset, showing that it can improve the conductivity of printed interconnects and even using sweat as an electrolyte in a wearable, bendable battery. This may open a new paradigm in the design of wearable electronics.”

See also  Starbucks Singapore App available on Android

Redefining how batteries are powered

The NTU-made battery is created by printing ink containing silver flakes and hydrophilic poly(urethane-acrylate) (HPUA), which function as the battery electrodes, onto a stretchable textile.

When the silver flakes come into contact with sweat, its chloride ions and acidity cause the flakes to clump together, increasing their ability to conduct electricity. This chemical reaction also causes an electric current to flow between the electrodes (see video).

When the battery material is stretched, its resistance is further lowered, meaning it can be used when it is exposed to strain, such as when its user is exercising.

As the stretchable textile is very absorbent, it retains a lot of sweat, so that the battery remains powered even when the rate of sweating is inconsistent. This is important for consistent functioning as the amount of human sweat secreted is variable and depends on the area of the body it is in, the environmental conditions and the time of day.

Prof Lee added: “Our device could be more durable than current technology, as we showed it could withstand strain from a wearer’s daily activities, and repeated exposure to stress or sweat.

“The slim size of our battery also solves two problems in wearable tech: traditional button batteries are a problem for achieving the sort of sleek aesthetics that are attractive to consumers, while thinner batteries reduce the item’s ability to carry enough charge to last throughout the day.”

The researchers plan to further explore the effects of other components of human sweat and how factors such as body heat may affect the performance of the battery.

See also  Creative SXFI Amp Produces Holographic Audio in a Dongle

About Nanyang Technological University, Singapore

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,000 undergraduate and postgraduate students in the Engineering, Business, Science, Humanities, Arts, & Social Sciences, and Graduate colleges. It also has a medical school, the Lee Kong Chian School of Medicine, established jointly with Imperial College London.

NTU is also home to world-renowned autonomous institutes – the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering – and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

Ranked amongst the world’s top universities by QS, NTU has also been named the world’s top young university for the last seven years. The University’s main campus is frequently listed among the Top 15 most beautiful university campuses in the world and it has 57 Green Mark-certified (equivalent to LEED-certified) building projects, of which 95% are certified Green Mark Platinum. Apart from its main campus, NTU also has a campus in Singapore’s healthcare district.

Under the NTU Smart Campus vision, the University harnesses the power of digital technology and tech-enabled solutions to support better learning and living experiences, the discovery of new knowledge, and the sustainability of resources.

For more information, visit www.ntu.edu.sg